skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chuang, Isaac"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Understanding neural representations will help open the black box of neural networks and advance our scientific understanding of modern AI systems. However, how complex, structured, and transferable representations emerge in modern neural networks has remained a mystery. Building on previous results, we propose the Canonical Representation Hypothesis (CRH), which posits a set of six alignment relations to universally govern the formation of representations in most hidden layers of a neural network. Under the CRH, the latent representations (R), weights (W), and neuron gradients (G) become mutually aligned during training. This alignment implies that neural networks naturally learn compact representations, where neurons and weights are invariant to task-irrelevant transformations. We then show that the breaking of CRH leads to the emergence of reciprocal power-law relations between R, W, and G, which we refer to as the Polynomial Alignment Hypothesis (PAH). We present a minimal-assumption theory demonstrating that the balance between gradient noise and regularization is crucial for the emergence the canonical representation. The CRH and PAH lead to an exciting possibility of unifying major key deep learning phenomena, including neural collapse and the neural feature ansatz, in a single framework. 
    more » « less
  3. Recent work shows that quantum signal processing (QSP) and its multi-qubit lifted version, quantum singular value transformation (QSVT), unify and improve the presentation of most quantum algorithms. QSP/QSVT characterize the ability, by alternating ansätze, to obliviously transform the singular values of subsystems of unitary matrices by polynomial functions; these algorithms are numerically stable and analytically well-understood. That said, QSP/QSVT require consistent access to a s i n g l e oracle, saying nothing about computing joint properties of two or more oracles; these can be far cheaper to determine given an ability to pit oracles against one another coherently. This work introduces a corresponding theory of QSP over multiple variables: M-QSP. Surprisingly, despite the non-existence of the fundamental theorem of algebra for multivariable polynomials, there exist necessary and sufficient conditions under which a desired s t a b l e multivariable polynomial transformation is possible. Moreover, the classical subroutines used by QSP protocols survive in the multivariable setting for non-obvious reasons, and remain numerically stable and efficient. Up to a well-defined conjecture, we give proof that the family of achievable multivariable transforms is as loosely constrained as could be expected. The unique ability of M-QSP to o b l i v i o u s l y approximate joint functions of multiple variables coherently leads to novel speedups incommensurate with those of other quantum algorithms, and provides a bridge from quantum algorithms to algebraic geometry. 
    more » « less
  4. Cloud-based quantum computers have become a re- ality with a number of companies allowing for cloud-based access to their machines with tens to more than 100 qubits. With easy access to quantum computers, quantum information processing will potentially revolutionize computation, and superconducting transmon-based quantum computers are among some of the more promising devices available. Cloud service providers today host a variety of these and other prototype quantum computers with highly diverse device properties, sizes, and performances. The variation that exists in today’s quantum computers, even among those of the same underlying hardware, motivate the study of how one device can be clearly differentiated and identified from the next. As a case study, this work focuses on the properties of 25 IBM superconducting, fixed-frequency transmon-based quantum computers that range in age from a few months to approximately 2.5 years. Through the analysis of current and historical quantum computer calibration data, this work uncovers key features within the machines, primarily frequency characteristics of transmon qubits, that can serve as a basis for a unique hardware fingerprint of each quantum computer. 
    more » « less
  5. At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) objective over the space of hard clusterings. To this end, we introduce the primal DIB problem, which we show results in a much richer frontier than its previously studied Lagrangian relaxation when optimized over discrete search spaces. We present an algorithm for mapping out the Pareto frontier of the primal DIB trade-off that is also applicable to other two-objective clustering problems. We study general properties of the Pareto frontier, and we give both analytic and numerical evidence for logarithmic sparsity of the frontier in general. We provide evidence that our algorithm has polynomial scaling despite the super-exponential search space, and additionally, we propose a modification to the algorithm that can be used where sampling noise is expected to be significant. Finally, we use our algorithm to map the DIB frontier of three different tasks: compressing the English alphabet, extracting informative color classes from natural images, and compressing a group theory-inspired dataset, revealing interesting features of frontier, and demonstrating how the structure of the frontier can be used for model selection with a focus on points previously hidden by the cloak of the convex hull. 
    more » « less